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Abstract
Nowadays, distributed generation plays a vital role in distribution systems. It makes an indisputable 
contribution towards power loss minimisation and voltage profile improvement. To maximise the 
benefits of distributed generators, their location and size is of crucial importance. This paper 
describes the use of clustering optimisation (CO) as a highly effective method for determining 
the optimal placement and sizing of distributed generators. Assessment of the effectiveness 
from the clustering optimisation method is achieved by its demonstration on a 69-bus and 
119-bus distribution systems. Furthermore, the results obtained from implementation of the 
proposed approach are compared to results from recent studies including analytical approaches, 
heuristic, and meta-heuristic, as well as mathematical programming algorithms. It is concluded 
that clustering optimisation is a simple and efficient method in terms of optimal allocation and 
sizing of distributed generators. It outweighs other approaches in terms of simplicity, results, and 
computation time.

Povzetek
Porazdeljena proizvodnja energije dandanes igra ključno vlogo v distribucijskih sistemih, saj 
nesporno prispeva k zmanjšanju izgub moči in izboljšanju napetostnega profila. Da bi povečali 
prednosti porazdeljenih virov, sta njihova lokacija in velikost ključnega pomena. Ta članek 
opisuje uporabo optimizacije združevanja v grozde (CO) kot zelo učinkovito metodo za določanje 
optimalne postavitve in dimenzioniranja porazdeljenih virov. Oceno učinkovitosti metode 
optimizacije grozdenja dosežemo z njeno demonstracijo na distribucijskih sistemih z 69 in 119 
zbiralkami. Poleg tega rezultate, pridobljene z izvajanjem predlaganega pristopa, primerjamo 
z rezultati iz nedavnih študij, vključno z analitičnimi pristopi, hevristiko in meta-hevristiko ter 
algoritmi matematičnega programiranja. Na ta način ugotovimo, da je optimizacija združevanja 
v grozde preprosta in učinkovita metoda v smislu optimalne alokacije in dimenzioniranja 
porazdeljenih virov ter odtehta druge pristope v preprostosti, rezultatih in času izračuna.

1 INTRODUCTION
Increasing climate change, dwindling resources and greenhouse gas emissions have led to an 
increase in the exploitation of renewable energy sources for electricity production. As renewables 
are scattered around the country, their potential can mostly be tapped through integration to the 
distribution system as a form of distributed generation (DG). In recent years, the share of DGs 
in power systems has been significantly increasing. Distributed generation can be defined as any 
electricity generating technology, installed by the utility system or at the site of a utility customer, 
connected at the distribution system level of the electric grid. [1] Therefore, DG integration 
undoubtedly affects the power system, especially at the distribution level. Properly located and 
sized units have the potential to reduce total power losses in the system, improve the voltage 
profile, enhance reliability, enable greater available capacity for power transmission and reduce 
equipment stress. [2] On the other hand, if not optimally placed and sized, the installation of DGs 
in the grid could cause an increase of system losses, crippling of the voltage conditions, voltage 
flicker and an increased level of harmonics, all leading to considerably greater costs. [3] Hence, 
the use of an efficient optimisation method for sizing and placement is of immense importance 
to fully access the benefits of DGs. [4-7]
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Numerous technologies can be considered as DGs. Photovoltaics and solar-thermal units, 
wind turbines, small hydro plants, geothermal units, all types of fuel cells and battery storage 
technologies can be categorised as DGs. [8] However, from a power system analysis point of view, 
any type of DG technology, depending on its specifics, can be presented as an active, reactive, or 
apparent power injection (PIN).

Over the past few years, a variety of different approaches and methods have been developed 
in relation to the issue of optimal sizing and allocation of PINs. They can generally be classified 
as analytical methods [8-14], heuristic and meta-heuristic [15-28], hybrid methods [29-37] and 
mathematical programming algorithms [38-41]. All approaches have unique advantages, but also 
have various limitations and setbacks to some extent.

Analytical techniques perform mathematical analysis of power distribution systems, resulting 
in a set of numerical equations that are used to formulate an objective function [13,14]. They 
have some remarkable features such as simplicity, easy implementation, and short computation 
time [7,10]. These techniques are suitable for variety of objectives, but they also have certain 
limitations. For instance, the authors in [8] present an analytical approach for determining 
the optimal location and size of a DG. The proposed algorithm consists of formulating a loss 
sensitivity factor based on equivalent current injection without requiring the Jacobian matrix, 
the admittance (or its inverse) matrix and manages to give competent results. However, the 
optimisation procedure only determines the location and size of a single DG unit that only injects 
active power. Another analytical method is presented in [11] which also considers only active 
power injection for the purpose of determining maximum power loss reduction. 

Heuristic methods are mainly based on engineering experience and knowledge acquired through 
research as done in [16]. These methods aim to explore the search space in a particularly 
convenient manner. Heuristic methods are generally problem dependent. Their greatest setback, 
however, is that they always give a possible solution which is not necessarily optimal. For example, 
the heuristic method based on Uniform Voltage Distribution Algorithm presented in [18] despite 
being robust and fast, fails to give the optimal allocation of reactive power injections. 

Meta-heuristic approaches (also known as population-based optimisation methods) are widely 
used because of their problem-independence and ability to provide competent results. However, 
most meta-heuristic algorithms are only approximation algorithms as they cannot always find 
the global optimal solution. Furthermore, they require tuning of a great number of parameters 
as well as long computation time due to their iteration-based nature. Teaching learning-based 
optimisation - TLBO [42] algorithm overcomes the problem of defining algorithm specific 
parameters. The optimality of the results and convergence properties of the TLBO algorithm 
have been improved in [42] by introducing a new quasi-oppositional TLBO - QOTLBO method. The 
QOTLBO algorithm; however, is parameter-dependent and has the tendency to get trapped in a 
local optimum. These shortcomings have been overcome with the comprehensive TLBO - CTLBO 
method presented in [43]. Nevertheless, all these methods can be classified as meta-heuristic 
approaches, hence retaining the advantages and disadvantages from this group of methods.

Combining methods from different groups, i.e., hybrid methods can contribute to overcoming 
some of the shortcomings from the individual methods. Therefore, the authors in [29] present a 
hybrid analytical and meta-heuristic method for optimal placement and sizing of multiple DGs of 
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different types. DG sizes are determined by analytical method, whereas their locations by a PSO 
algorithm. The results obtained from this method are superior compared to results attained from 
PSO and analytical methods. However, due to the iteration-based nature of the PSO method, the 
algorithm can encounter difficulties in terms of convergence speed and accuracy by increasing 
the number of variables and implementation on large scale networks. LSF-BFOA method is 
presented in [31] and used for simultaneous placement of DG and DSTATCOM. Location of the 
DG and DSTATCOM is determined by using a loss sensitivity factor - LSF and the optimal size is 
then determined by using a Bacterial Foraging Optimisation Algorithm - BFOA. Despite offering 
superior results, the LSF-BFOA method is characterised with a relatively long computation time. 
Something similar is done in [35] using loss sensitivity factors - LSF and then gradually placing 
DGs in a set determined from the sensitivity analysis.

Table 1: Overview and number of methods the proposed approach is compared with

Method Citation Approach № of methods 
citation outperforms Test case Year

AM [8] analytical 2 IEEE-69 2009
IA [10] analytical 2 IEEE-69 2013
AA [13] analytical 2 IEEE-69 2015
EA [14] analytical 5 IEEE-69 2016
NH [15] heuristic 5 IEEE-69&119 2019
BPSO-SLFA [26] heuristic 3 IEEE-69 2020
TLBO [42] meta-heuristic 4 IEEE-69 2014
QOTLBO [42] meta-heuristic 4 IEEE-69&119 2014
IWO [27] meta-heuristic 5 IEEE-69 2016
CTLBO [43] meta-heuristic 2 IEEE-69&119 2018
DE-TLCHS [25] meta-heuristic 1 IEEE-69 2019
MRFO [28] meta-heuristic 8 IEEE-69 2020
HPSO [29] hybrid 2 IEEE-69 2014
LSF-BFOA [31] hybrid 3 IEEE-119 2016
MFO [37] hybrid / IEEE-69 2017
BIBC [36] hybrid / IEEE-69 2018
QODELFA [32] hybrid 6 IEEE-69&119 2019
LSF-SSA [33] hybrid 2 IEEE-69 2019
DGPI [35] hybrid 6 IEEE-69 2020
FP-PSO [34] hybrid / IEEE-69 2020
NLP-PLS [40] mathematical 8 IEEE-69 2016
MISOCP [41] mathematical 8 IEEE-69&119 2019
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Real-world problem mathematical formulations are derived under certain assumptions that 
should reflect and model the problems physical behaviour in as much detail as possible. Even 
with these assumptions, the solution to large scale power systems is not simple. Methods that 
propose mathematical programming algorithms are usually unsuitable for large power systems 
and prone to errors when linearising its non-linear characteristics and uncertainties. It is desirable 
that a solution to any problem should be a global optimum. However, solutions obtained by 
mathematical optimisation are not necessarily globally optimal. The reason behind this is 
usually the modelling complexity and linearisation processes which can be quite challenging. 
[39] These facts make it difficult for these methods to deal effectively with many power system 
problems through strict mathematical formulation alone. Furthermore, gradient search, linear 
programming, dynamic programming, sequential quadratic programming, and nonlinear 
programming are considered as traditional methods, but none of them provides a solution to 
complex problem or optimal solution within a reasonable time. [7] It should be mentioned; 
however, that if the mathematical formulations are reflecting the problems behaviour exactly, 
even though computation time is rather long, mathematical programming algorithms guarantee 
a highly superior if not globally optimal result. [41]

This paper outlines a new approach to solving the problem of optimal allocation and sizing of 
PINs by presenting a simple search-based algorithm that in its essence is a pattern of using a 
load flow procedure. The main motivation behind this research is to introduce a simple solution 
to a highly complex non-linear problem. By iteratively looping through the network buses, 
the algorithm places a PIN of a defined size and type (active, reactive, or apparent) at specific 
locations yielding minimum power losses while keeping all voltages at their acceptable levels. 
Moreover, the optimal power factor is also determined in the case of apparent type of PIN. The 
proposed method is demonstrated on a 69-bus and 119-bus distribution system. Table 1 presents 
an overview of methods from all mentioned groups of optimisation approaches over the past 
decade, along with several methods/approaches they outperform. Results from the proposed 
method are compared to those from Tab. 1. It can be concluded that the proposed method is 
superior to every recent methodology, apart from a very few exceptions. It produces repetitive 
and unique results; it is extremely easy to implement, and it has a short computation time.

2 PROBLEM FORMULATION
Determining the optimal location and size of a PIN in the distribution system is a complex non-
linear problem. As previously mentioned, for a certain location (bus) in the network, as the size 
of the PIN increases, an adequate decrease in losses can be noticed. However, after exceeding 
a certain PIN threshold, the losses start to increase again due to a reverse power flow towards 
the slack/supply bus. The size of the PIN should at most be such that it is consumable within the 
distribution substation limits. [12]

The problem of determining the optimal PIN size and locations is quantified through objective 
function that can take any mathematical formulation in terms of complexity. For purposes of 
comparison to other relevant research, objective function introduced in this paper includes costs 
for energy and power losses only and should yield a least possible value, i.e., minimum:

min e p maxF c W c P= ⋅∆ + ⋅∆
                                                      (2.1)
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with ce being the cost for kilowatt-hour of electricity ($/kWh), ΔW being the electricity losses 
within the observed period (kWh), cp being the cost per kilowatt for reduction in losses ($/kW) 
and ΔPmax being the maximum power losses during the same period (kW). To determine the 
minimum value of the objective function, it is necessary to obtain the minimum value of power 
losses which would also result in a minimum value of electricity losses during the observed 
period.

The number of constraints and their formulation can be regarded as a way of guiding the 
optimisation algorithm towards a feasible and possibly optimal solution because not necessarily 
always these two go hand in hand. Imposing a high number of constraints generally narrows the 
optimisation algorithm search path and while providing a more accurate and realistic approach, 
the trade-off is a feasible but not necessarily optimal solution and vice versa. For purposes of 
comparison to other relevant research, during all calculations, constrains on bus voltage values 
are imposed by setting an upper and lower bound, [44] resulting in the following constraint:

 , for 1, ,min i maxV V V i NB≤ ≤ = …  (2.2)

where Vmin= 0.9 pu, Vmax= 1.1 pu and NB being the number of buses in the given network.

3 LOAD FLOW
Aiming for optimal placement and sizing of PIN, it is first and foremost indispensable to 
determine the parameters of interest in the distribution system, i.e., bus voltages and 
power losses. Due to distribution systems specific nature such as high R/X ratio and radial 
structure, conventional load flow methods usually fail to give satisfactory results. [45] Of 
all proposed power flow solution methods for distribution systems, backward/forward 
sweep methods are most widely used because of their computational efficiency and robust 
convergence characteristics. [46-48] The efficiency of the sweeps can be enhanced with 
oriented branch numbering [49], the only requirement being that the sending bus number 
i is smaller than the receiving bus number k, i.e., i < k (Fig. 1). Indices from the branch’s 
sending buses are stored in a vector f, such that i = f(k), where k is the index of the branch’s 
receiving bus. Additionally, by introducing a fictitious branch with index 1 (sending end 
index 0), the number of branches NL becomes equal to the number of buses NB, making the 
sweep procedure very simple and efficient.

Figure 1: Branch representation: branch k between buses i (sending end)  
and k (receiving end)
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Backward sweep consists of equations that calculate the power flow through branches starting 
from the last one and proceeding in a backward direction towards the supply/slack bus. First, 

receiving end branch flows are calculated using (3.1), where receive
demandS   is the power demand at 

the branch’s receiving end and shunt
kY is shunt admittance connected to bus k due to capacitance 

of the lines and/or connected capacitors (3.2).

2( ) , for 1 ,receive receive shunt
k demand k kS S Y V k NB∗= + ⋅ = …                                     (3.1)

 ( ), for 1 ,capshunt lines
k k kY j B B k NB= + = …                                     (3.2)

, , for 1 ,receive receive PIN
demand new demand kS S S k NB= − = …                                     (3.3)

Afterwards, sending end branch flows are calculated using (3.4) and added to the branch’s 
receiving end that supplies them (3.5).

2

, for , 1 , 2
receive

send receive branch k
k k k

k

S
S S Z k NL NL

V
= + = − …

                                    (3.4)

, , for , 1 , 2receive receive send
i new i kS S S k NL NL= + = − …                                      3.5)

Forward sweep is performed to determine the voltage drops and actual voltages of each 
bus starting from the slack bus and proceeding in the forward direction towards the last bus 
using (3.6).

, for 2, ,
send

branch k
k i k

i

S
V V Z k NL

V

∗
 

= − ⋅ = …  
 

                                    (3.6)

After completing a sweep, the calculated voltages of the present iteration are compared to those 
from the previous one. If the voltage mismatch between two consecutive iterations is less than 
the specified tolerance of ε = 10-4, convergence can be achieved. Otherwise, the procedure is 
repeated until convergence of the solution is attained. After determining the power flow through 
the branches, it is easy to calculate the active power losses by simply subtracting the real parts 
from the complex sending and receiving end branch power flows (3.7):

receive
kP                                     

(3.7)
 

where receive
kP is active power from the branch’s sending bus and receive

kP is active power from 
the branch’s receiving bus.

Optimal Dispersed Generation Placement in Radial Distribution Systems Using a Pattern  
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4 CLUSTERING OPTIMISATION
As has been previously mentioned, many approaches have been proposed in terms of determining 
the best possible location and size of PINs in an existing distribution system. However, some 
of them only consider PINs with unity power factor, some are applicable only for single power 
injecting unit allocation, others offer nearly optimal solutions, and some have inconveniently 
high computation time. To overcome these shortcomings, a simple search-based clustering 
optimisation (CO) is presented in this paper.

Basic idea behind the CO is by iteratively probing all buses from the distribution system apart from 
the slack bus, to place PINs of user-defined size and number of locations at locations that would 
yield least possible losses, which is quantified through (2.1). Power injections can be considered 
as purely active, purely reactive, or apparent. Iterative bus probing eliminates the need of using 
any kind of sensitivity analysis for bus selection as the process itself implicitly does that.

In case of apparent power injection, the optimal value of the power factor is also determined. 
Proposed approach does not constrain the power factor value when searching for its optimal due 
to several reasons: [4-7]

• Most if not all utility owners demand from their dispersed generation PINs reactive power 
support without any specified value or quantity;

• Most dispersed generation PINs are owned by private entities which are usually if not 
exclusively more incentivised when injecting purely active power, i.e., they tend to operate 
at unity power factor. In some cases, they’re required to operate at unity power factor at 
their point of common coupling, i.e., they should only produce reactive power for their own 
personal operational requirements;

• Imposing constraints on power factor value implicitly disables the proposed approach in 
reaching competitive and comparable results to other relevant methods.

During the CO procedure, all buses apart from the slack are considered candidate buses for 
optimal PIN placement, i.e., there is no bus selection procedure nor weak bus sensitivity analysis. 
There are many reasons for avoiding this type of bus pre-processing. Not all buses possess the 
same sensitivity trend when subjected to a same rate of power injection change. This is owed 
to network topology, load, and voltage profile. For example, if a single small power injection 
is placed on every bus successively, they will attain a certain sensitivity index based on the 
applied analysis. This index can be used to rank the buses in terms of their susceptibility towards 
receiving that particular power injection. However, adding a successive power injection of same 
size introduces a shift in bus sensitivity index following its appropriate trend that is unknown, 
meaning there may be a shift in position from the previous bus ranking. For a fixed number of 
locations for PIN placement this is a huge problem since the set of locations potentially changes 
by successively adding more power injections per bus and the analysis becomes obsolete. There 
are ways one can alleviate that, i.e., sensitivity analysis and bus ranking can be performed for 
base case scenario and the obtained set of buses can be kept constant throughout the process 
of optimisation. However, one should bear in mind that different sensitivity analysis imposes 
different set of candidate buses and consequently a different solution that may or may not be 
optimal. [50]
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The proposed approach alleviates this drawback by probing each bus with a small power injection, 
i.e., implicitly choosing locations that yield least possible losses while inherently following the 
buses sensitivity trend, hence avoiding the bus selection procedure. The CO algorithm calculates 
power losses in the distribution network using a linearised (flat start, single iteration) load flow 
[48] while keeping the voltage profile of the system within prescribed limits. The use of linearised 
load flow implies that load flow procedure finishes after one iteration, i.e., the resulting power 
losses and voltages are obtained after a single iteration of backward/forward sweeps. The latter 
enables placing PINs at each bus successively while keeping the computation time for the entire 
procedure significantly short.

Values of power losses obtained from a linear load flow are smaller compared to those obtained 
from regular iterative load flow due to flat start, i.e., all bus voltages are equal to the distribution 
system nominal voltage. Therefore, to obtain the actual values of power losses and voltages, 
another non-linear load flow is performed at the end of the clustering procedure. This approach is 
legitimate as the difference in values obtained from both linear and non-linear load flow solution 
is equal for each bus, therefore the optimal PIN size and their optimal locations do not change. 

The number of locations for PIN placement, type, size and stepϕ  (in case of apparent PIN for 
attaining optimal power factor) are all user-defined. The CO algorithm performs through the 
following steps:

• Step 1. Read distribution system line and load data and obtain total number of buses locN
. Initialise user-defined PIN size and type, desired number of locations for PIN placement 

locN , power factor angle step 0n = and counter 0n =  (current number of buses where 
PINs are placed). Perform base case load flow and obtain values for distribution system 

power losses 0P∆ and minimum voltage min,0U .

• Step 2. Place PIN units with predefined size ( )PIN
unitS and type (active, reactive, or apparent) 

at each bus stepϕ . Perform subsequent linearised load flows (flat start, single iteration) for 
each PIN at each bus i, to check for power loss reduction. If apparent PIN type is considered, 

perform additional linearised load flows for each value of stepϕ to check for optimal power 

factor as well, for each / 2π− at each bus. The value of / 2π− goes from / 2π− to / 2π+

with a resolution of PIN
iS . Stop placing PINs per bus i if no loss reduction and no voltage 

improvement is achieved. Store the cumulative PIN for bus i as PIN
iS and its appropriate 

losses iP∆ and minimum voltage min
iV .

• Step 3. Using the results from Step 2, for the set of buses 2,3, Bi N= … , find bus m that 

ensures minimum active power losses 2 3min( , , , )
Bm NP P P P∆ = ∆ ∆ … ∆ . Place the power 

injection at N
m
PIS  location m and increase the counter n by 1.

Optimal Dispersed Generation Placement in Radial Distribution Systems Using a Pattern  
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• Step 4. Update the power demand with   locn N=  at the target bus m obtained from Step 3 
using (3.3) and repeat the previous two steps until the desired number of locations is achieved  

(   locn N= ) or no power loss reduction is detected.
• Step 5. Perform final non-linear load flow for the cumulative PINs and placement 

locations to obtain actual values for power losses and voltages.

Figure 2 represents a flow chart of the CO algorithm to further support and explain its 
performance. Additionally, an example for illustrative purposes is presented below.

Example: The CO algorithm is illustrated on a 12.66 kV, 69-bus distribution system searching 
a single location by placing apparent PINs of size ϕ  kVA. The value of ϕ goes from / 2π+ to 

/ 2π+ with / 9stepϕ π= . The main purpose is power loss minimisation, i.e., minimum value 

of (2.1) with 0 225P∆ = and 0 225P∆ = . Base case losses are 0 225P∆ = kW and lowest voltage 

occurs at bus 65, i.e., @ 65
,0 0.9092minU = pu. All buses apart from the slack bus are considered for 

potential PIN placement. 
Considering the use of apparent PIN in this example, the procedure also determines the optimal 

value of / 9stepϕ π=  which yields minimum losses, by performing subsequent linearised load 

flows for each value of / 9stepϕ π= from / 2π+  to / 2π+ . The latter is done for each PIN
unitS  

per bus. The CO builds the cluster by continuously adding ϕ  per bus and obtaining the optimal 
value of ϕ  until no further loss reduction is detected. When no further power loss reduction is 

detected by adding additional N
i
PIS  at a certain bus, the cluster, i.e., cumulative PIN with size 

N
i
PIS and cumulative value of ϕ  is formed. Figure 3 shows a normalised histogram of PINs and 

power losses for every candidate bus. Losses are normalised to 0P∆  and PINs are normalised to 
the maximum system injection per bus, which for this example is 4944.7 kVA.
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Figure 2: Flow chart of the CO algorithm
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Figure 3: Normalised histograms of PINs and power losses for all candidate buses  
from the 69-bus distribution system

Figure 4: Cluster formation at bus 61 from the 69-bus distribution system

Once the cumulative PIN for every bus ( @
PIN

busS ) is determined along with its appropriate losses, 
the CO performs a simple search for minimum losses and optimal bus for PIN placement. The 
cumulative PIN is then placed at the determined/optimal location. In this example, the optimal 

location is bus 61 (Fig. 3), while the cumulative PIN value is 35.42
@ 61 2173.5

oPIN jS e= ⋅ kVA. 

The cluster formation for the optimal location is visually presented in Fig. 4 and Tab. 2.
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Table 2: Cluster formation at bus 61 from the 69-bus distribution system

Iteration № PIN
unitS ϕ

1-6 200ej30 300

7 200ej50 500

8 200ej30 300

9 200ej50 500

10 200ej30 300

11 200ej50 500

2173ej35.42 35.420

Step 4 is omitted in this example since there is only one potential location for PIN placement. 
However, the updating of power demand at bus 61 ( @ 61 @ 61

@ 61,
PIN

demand new demandS S S= − ) is still 
performed considering the new condition in the distribution system.

Next, the CO performs a final non-linear load flow to determine the actual power losses 

23.3370P∆ = kW and minimum voltage @ 27 0.9720minU = pu in the distribution system.

5 ROBUSTNESS, CONVERGENCE PROPERTIES AND  
 COMPUTATION TIME
The proposed CO method possesses several remarkable features, making it superior in terms of 
complexity/simplicity, implementation, and results compared to other existing search-orientated 
methods (referenced in Section 1) used for optimal power injection sizing and allocation.

• There is no bus selection procedure, nor any form of mathematical modelling and analysis 
for bus selection. The CO method implicitly chooses locations/buses based on a simple 
search described in Section 4;

• The CO method produces unique, mostly superior, repetitive, and easily reproducible results 
compared to other search-orientated methods;

• The algorithm operates in relatively short computation time that is dependent on distribution 
system size and PIN type/size. In case of apparent PINs, computation time is generally longer 
because optimal power factor is also being determined. Moreover, smaller size of PIN units 
engenders longer computation time due to an increased number of performed calculations 
per bus;

• Users are disburdened from complex mathematical formulations or models as in its essence, 
the CO method is a ‘pattern of using a load flow procedure’ making it extremely easy to 
implement.

Optimal Dispersed Generation Placement in Radial Distribution Systems Using a Pattern  
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Table 3 summarises the CO’s performance for the 69-bus distribution system. It can be noted 
that for rather large range of PIN sizes the power loss and cumulative PIN deviations are small. 
This is owed to the fact that cluster formation with a certain PIN size can be considered as cluster 
resolution. Larger PIN size imposes faster and rougher cluster formation, i.e., shorter computation 
time. Smaller PIN size imposes slower and smoother cluster formation but at the expense of 
longer computation time. Furthermore, PIN size and type are user-defined variables which can 
be considered a drawback if one’s so insistent on that tenth or hundredth of a kilowatt losses 
delta. Real-life distribution system line and load data acquisition can be quite a difficult task. 
Additionally, distribution system data collection can introduce errors of magnitude in several 
tens of percent so it can be safely said that the method is as accurate as the accuracy of the input 
data. Tab. 3 should only serve for user’s illustrative and indicative purposes when choosing PIN 
size regarding output results and computation time.

The CO algorithm is implemented in MATLAB R2018a. All calculations are performed on a laptop 
configuration with a 2.6-GHz Intel Core i5-4210M processor with 8Gb of RAM. All solutions from 
references subject to comparison with the CO algorithm are ran through a load flow procedure 
to check for accuracy of the results. Figure 5 illustrates convergence curves for the CO algorithm 
when searching for a single location and three locations accordingly. It should be noted that the 
ending point of the single location convergence curve is a starting point for the next one etc. 
The latter is owed to the fact that CO algorithm successively chooses buses (one by one) for PIN 
placement which is explained in detail in Section 4.

Table 3: Power loss deviation and calculation time depending on PIN size, type,  
and number of locations for the 69-bus distribution system

Active PIN Reactive PIN Apparent PIN
№ PIN Size ΔPP tP Total ΔPQ tQ Total ΔPS tS Total

(kVA) (kW) (sec.) (kW) (kW) (sec.) (kVAr) (kW) (sec.) (kVA)

1

1 83.26 8.69 1841 152.06 6.01 1307 23.17 113.13 2237.65ej35.45

50 83.24 0.20 1850 152.08 0.13 1300 23.19 2.23 2223.31ej35.30

100 83.41 0.09 1800 152.08 0.07 1300 23.2 1.15 2273.10ej35.18

200 83.41 0.06 1800 153.43 0.04 1200 23.34 0.60 2173.52ej35.42

2

1 71.8 12.24 2353 146.49 8.34 1654 7.57 149.32 2851.33ej35.16

50 71.85 0.25 2350 146.51 0.23 1650 7.51 3.00 2797.55ej34.27

100 71.83 0.19 2300 146.61 0.11 1600 7.88 1.62 2867.80ej34.79

200 72.42 0.10 2300 147.78 0.06 1600 7.5 0.91 2765.32ej35.68

3

1 70.28 13.39 3072 145.70 9.99 2168 5.29 159.29 3734.45ej35.24

50 70.34 0.29 3050 145.72 0.25 2150 5.22 3.67 3706.98ej35.03

100 70.32 0.17 3000 145.83 0.17 2100 5.59 1.87 3755.30ej35.23

200 69.78 0.10 2600 146.99 0.10 2200 5.24 1.41 3556.18ej35.52
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Figure 5: Convergence curves for power losses of the CO method: a)  
single location 69-bus, b) three locations 69-bus

6 CASE STUDIES
Assessment of the effectiveness of the proposed CO method is achieved by its application on two 
distribution systems: 12.66 kV, 69-bus distribution system [51] and an 11 kV, 119-bus distribution 
system. [52] To emphasise the unique properties of the CO method, results obtained from the 
two distribution systems are compared to results from recent work. For purposes of comparison, 

data concerning the objective function (1) is given with 1pc = and 1pc = . Otherwise, objective 

function values in Tab. 4 and Tab. 6 are calculated with 0.067ec =  $/kWh and 16pc =  $/kW. 

Base-case values for power losses, minimum voltages, and objective function (1) for both systems 
are:

69-bus. min   0.9092U =  (kW), min   0.9092U =  (pu) and 0   135657F =  ($/year)

119-bus. 0 1298P∆ =  (kW), 0   782590F =  (pu) and 0   782590F =  ($/year)

6.1 69-bus distribution system
Table 4 shows results from the performed analysis using the proposed CO method on the 69-
bus distribution system. Nine different scenarios are considered, i.e., three scenarios for each 
PIN type (active – P, reactive – Q and apparent – S) for one, two and three locations. For each 
scenario, minimum voltages and computation time is also presented. Table 4 suggests that 
the CO method performs remarkably well presenting unique results in terms of power losses, 
minimum voltage, and computation time.
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Table 4: Results from CO for 69-bus distribution system (power injection size is expressed  
in P(kW), Q(kVAr) and S(kVA); voltages in pu)

PIN №
& Type Size@Bus Umin@Bus ΔP 

(kW)
F ($/
year)

t 
(sec)

1P 1869.3@61 0.9683@27 83.22 50175 0.14

2P 1836@61 516@17 0.9807@65 71.77 43272 0.81

3P 1755@61 390@21 390@11 0.9795@65 69.7 42024 0.09

1Q 1313@61 0.9305@65 152.05 91674 0.38

2Q 1296@61 336@17 0.9314@65 146.48 88316 0.16

3Q 1302@61 350@17 518@50 0.9315@65 145.68 87833 0.57

1S 2249.5ej35.33@61 0.9725@27 23.17 13970 2.22

2S 2209.5ej35.29@61 649.6ej34.00@17 0.9943@50 7.44 4486 3.64

3S 2120.5ej35.55@61 471.4ej35.00@21 471.4ej35.00@11 0.9973@50 4.6 2773 2.90

Table 5: Table of comparison for 69-bus distribution system

Method Approach Scenario ΔP (kW) t (sec.) CO outperforms

AM [8] analytical 1P 92.00 0.078 Yes

IA [10] analytical
3P 69.96 0.71 Yes

3S 12.72 / Yes

AA [13] analytical
3P 70.20 / Yes

3S 5.92 / Yes

EA [14] analytical
1P 83.23 0.2 Yes

1S 23.26 / Yes

NH [15] heuristic
3P 69.70 / Yes

3Q 145.30 / No

BPSO-SLFA [26] heuristic 1P 152.15 / Yes

TLBO [42] meta-heuristic 3P 72.40 / Yes

QOTLBO [42] meta-heuristic 3P 71.62 0.078 Yes

IWO [27] meta-heuristic
3P 74.59 5.7 Yes

3S 13.64 / Yes

CTLBO [43] meta-heuristic 3P 69.43 / No

DE-TLCHS [25] meta-heuristic 3S 5.00 / Yes

MRFO [28] meta-heuristic 3P 69.43 / No
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HPSO [29] hybrid
1P 83.37 / Yes

3S 4.61 / Yes

MFO [37] hybrid
1P 83.22 / Yes

2S 9.47 / Yes

BIBC [36] hybrid 3P 91.54 / Yes

QODELFA [32] hybrid
3P 69.43 / No

3S 12.07 / Yes

LSF-SSA [33] hybrid
1P 83.17 / No

1S 27.91 / Yes

DGPI [35] hybrid
1P 83.22 0.24 Yes

1S 23.30 0.28 Yes

FP-PSO [34] hybrid
1S 61.67 / Yes

2S 43.67 / Yes

NLP-PLS [40] mathematical
1P 83.23 0.078 Yes

1S 23.18 0.078 Yes

MISOCP [41] mathematical
3P 69.43 / No

3S 4.27 / No

Table 5 compares the results from the CO method to other methods that use various approaches. 
Comparison is made for the simplest and the most complicated case presented in the cited 
references. All results are run through a load flow program to check for accuracy and adequate 
comparison. CO outperforms in almost every case. It is important to bear in mind that power loss 
differences per scenario, amongst all compared methods, differ within tenth of a kilowatt at best 
and several kilowatts at worst, regardless the method and its approach. Given the uncertainty of 
real distribution systems input data, it can be said that methods accuracy strongly depends on 
the accuracy of the input data. This is where CO strongly outperforms any other method as it is 
extremely simple for implementation - pattern of using a load flow procedure, something that 
every power system engineer knows extremely well. Not everyone possesses a strong modelling 
and mathematical knowledge and background to shape these types of problems, but certainly 
everyone or almost everyone knows how to implement a load flow procedure and do a simple 
search. In terms of computation time (wherever noted, ‘/’ in Table 5 means unreported), CO 
outperforms most of the methods. Mathematical methods depending on the problem size could 
take several tens of minutes or even hours in some cases. [41] Analytic, heuristic and hybrid 
methods possess computation time comparable to the CO method.

6.2 119-bus distribution system
Performance evaluation of the CO method for the 119-bus distribution system is attained through 
five scenarios including: three scenarios for optimal placement and sizing of active, reactive, and 
apparent PINs at five locations, and two more scenarios including optimal placement and sizing 
of active and apparent PINs with optimal power factor at seven locations.
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Table 6 shows results from the performed analysis using the CO method on the 119-bus 
distribution system. Comparison results are presented in Tab. 7. Again, all results are run through 
a load flow program to check for accuracy and adequate comparison. CO outperforms in almost 
every case, except when compared to MISOCP. The reason behind this is that in [41], an exact 
model for the distribution system and load flow equations is used with no linearisation and no 
neglections, meaning that the obtained results present a global optimum. This is a mathematical 
approach and takes quite a while to reach an optimal solution (several minutes to several hours 
depending on the scenario). However, the CO method gives results that are very near those 
presented with MISOCP and in reasonable computation time as it can be seen from Tab. 6. 
Compared to other methods, CO outperforms in terms of power losses, i.e., solutions differ from 
several kilowatts at best to several tens of kilowatts at worst in favour of the proposed algorithm. 
Computation time is better, if not comparable, to other methods subject to comparison.

Table 6: Results from CO for 119-bus distribution system (power injection size is expressed in 
P(kW), Q(kVAr) and S(kVA); voltages in pu)

Size@Bus
PIN № & Type 5P 5Q 5S 7P 7S

2800@50 4400@29 3942ej42.0@50 1760@20 2072ej36.6@20
2800@71 2600@50 3179ej32.5@72 1870@41 2420ej35.7@41
2400@79 1800@72 2765ej35.7@80 2860@50 3796ej42.8@50
1600@96 1700@80 1981ej34.0@96 2860@71 3131ej32.2@72
2800@110 2300@110 3546ej38.9@110 2200@80 2760ej37.5@80

1540@97 2082ej33.3@96
3080@109 3447ej40.0@110

Total PIN (kVA) 12400 12800 15413 16170 19708
ΔP (kW) 574.33 857.69 211.58 515.82 127.61
Umin

 (pu) 0.955 0.9074 0.9608 0.9582 0.9764
F ($/year) 346280 517120 127570 311000 76940
t (sec) 0.82 2.14 9.42 3.13 13.08

Table 7: Table of comparison for 119-bus distribution system

Method Approach Scenario ΔP (kW) t (sec) CO outperforms

NH [15] heuristic

5P 580.74 2.5 Yes
5Q 861.60 2.0 Yes
5S 227.50 5.4 Yes
7P 515.70 4.1 No
7S 128.80 6.2 Yes

QOTLBO [42] meta-heuristic 7P 576.00 20.83 Yes
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CTLBO [43] meta-heuristic 7P 516.25 / Yes

LSF-BFOA [31] hybrid

5P 578.97 23.24 Yes
5Q 871.40 23.21 Yes
5S 227.90 24.65 Yes
7P 526.34 24.96 Yes
7S 132.10 25.96 Yes

QODELFA [32] hybrid
7P 518.65 / Yes
7S 132.79 / Yes

MISOCP [41] mathematical

5P 571.29 / No
5Q 856.37 / No
5S 208.13 / No
7P 513.27 / No
7S 123.37 / No

7 CONCLUSION
This paper presents a clustering optimisation (CO) method for optimal placement and sizing of 
DG’s presented as active, reactive, or apparent power injections (PINs) with the aim of obtaining 
minimum power losses while maintaining an acceptable system voltage profile. The effectiveness 
of the proposed method is assessed through simulations performed on a 69-bus and 119-bus 
distribution systems. It can be concluded that the proposed method performs outstandingly, 
presenting unique results in all considered scenarios. Results attained from the performed 
analysis are compared to results from recent methodologies stretching back over the past 
decade. Tables 5 and 7, coupled with the information from Tab. 1, suggest that the proposed 
method is implicitly compared to over 50 other methods. It is noted that for most scenarios, 
CO gives lower power losses and total PIN size compared to other methods, while for other 
scenarios it presents slightly higher power losses and total PIN size. Power losses and total PIN 
sizes attained from the CO method are of the same order of magnitude as power losses and 
total PIN sizes attained from recent methodologies in all considered cases. Therefore, the slight 
deviation (fractions of kilowatts) in values obtained from the CO method compared to other 
methodologies is practically insignificant/negligible, considering the uncertainty of input data.

In its essence, the CO method is a pattern of using a load flow procedure. It does not include 
solving complex mathematical formulations, and it does not operate with population, nor its 
creation and iterative updating. In addition to this, it does not use problem coding and/or solution 
decoding and has no convergence problems, the latter of which renders the method superior in 
terms of its simplicity/complexity and easy implementation. Furthermore, the lack of laborious 
procedures makes the method significantly intelligible, simple, and easy to reproduce. Since 
the methods working principle is based on simple mathematical formulations and there is no 
dedicated bus selection procedure, optimal or nearly optimal solutions are obtained remarkably 
quickly. Short computation time enhances the convenience of using this method. Finally, another 
salient advantage of the proposed method is the recurrence of results, i.e., the results obtained 
are repetitive from simulation to simulation, which is not the case for some of the other existing 
methods.
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